DRAFT Brown Trout (*Salmo trutta*) Thermal Tolerance Analyses – Juvenile and Adult, Summer January 2016

Introduction

Recommended summer chronic and acute thermal tolerance values for juvenile and adult brown trout and their justification are discussed below. The recommended tolerance values were developed in accordance with the "DRAFT Methodology for Developing Thermal Tolerance Thresholds for Various Fish in Nevada – Juvenile and Adult, Summer" (September 2015).

Chronic Thermal Tolerance Thresholds

Table 1 provides a summary of the range of chronic temperature tolerance values for brown trout for various lines of evidence. These values are based upon a review of sixteen papers and publications, the details of which are summarized in Attachment A.

There is obviously a wide range of temperatures from which to select an appropriate value and best professional judgment is called for. NDEP's approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize other values. EPA's chronic value of 17°C falls within the upper end of the range of potential criteria found in the literature, and is recommended as the chronic thermal tolerance level for adult/juvenile brown trout. As discussed in the methodology, chronic temperature criteria are generally not set to ensure the most optimum conditions. In fact, Brungs and Jones (1977) recommends that a chronic criterion for a given fish species be between the optimum temperature and the UUILT.

Table 1. Summary of Chronic Temperature Tolerances

Category	Temperature (°C)
Laboratory Optimal Growth Studies – Constant Temperature	
Optimum	12.8 - 19.0
Upper Optimum	15.0 - 19.6
Laboratory Temperature Preference Studies	
Average Preferences	11.7 - 18.5
Upper Preferences	13.7 - 22.8
Laboratory Upper Temperature Avoidance Studies	15.0 - 25.0
Field Growth Studies	13.2 - 16.5
Field Temperature Preference Studies	21.0 - 25.3
Thresholds from EPA and Colorado (MWAT)	17.0 – 19.6
Recommended Chronic Temperature Tolerance (MWAT)	17.0

Acute Thermal Tolerance Thresholds

Table 2 provides a summary of the range of acute temperature tolerance values for brown trout for various lines of evidence. These values are based upon a review of ten papers and publications, the details of which are summarized in Attachment B.

For ease of presentation, the UILT and CTM values have been summarized by acclimation temperature ranges. However as discussed in the methodology document, only the UILT and CTM values for acclimation temperature near the recommended chronic criterion (17°C) are to be included in the acute criterion development process. For brown trout, UILT and CTM values for acclimation temperatures of 15 - 20°C are utilized for criterion development.

Table 2. Summary of Acute Temperature Tolerances

Category	Temperature Tolerances (°C)	Potential Acute Criteria (°C)	
Laboratory Lethal Studies – UILT/UUILT			
UILT			
Acclim. = 5 - 10°C	22.5 - 24.5		
Acclim. = 10 - 15°C	24.2 - 26.2		
Acclim. = 15 - 20°C	24.4 - 26.5	$22.4 - 24.5^{1}$	
Acclim. = 20 - 23°C	24.8 - 27.8		
Laboratory Lethal Studies – CTM			
Acclim. = 10 - 15°C	24.8 - 30.0		
Acclim. = 15 - 20°C	24.8 - 30.0	$19.0 - 24.2^2$	
Field Studies	22.9 - 27.6	22.9 - 27.6	
Thresholds from EPA and Colorado	24.0 – 24.6		
Recommended Acute Temperature Tolerance (MDMT)	24.0		

¹UILT and UUILT values reduced by 2°C to provide 100% survival (See *Methodology*)

A review of laboratory and field studies suggest that an appropriate acute criteria should fall between 19.0 and 24.5 °C, while field studies suggest a wider range of 22.9 to 27.6 °C. This is obviously a wide range from which to select an appropriate value and best professional judgment is called for. NDEP's approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize another value. EPA's acute value of 24 °C falls within the upper end of the range of potential criteria found in the literature, and is recommended as the acute thermal tolerance level for adult/juvenile brown trout.

²CTM values reduced by 3.8°C to estimate quasi-UILT values. Quasi-UILT value then reduced by 2°C to provide 100% survival (See *Methodology*)

References

Brown, M.E. 1946. The growth of brown trout (Salmo trutta Linn.) III. The effect of temperature on the growth of two-year old trout. Journal of Experimental Biology, 22: 145-155.

Carline, R.F. and J.F. Machung. 2001. Critical thermal maxima of wild and domestic strains of trout. Trans. Amer. Fish. Soc. 130:1211-1216.

Cherry, D.S., K.L. Dickson, J. Carns, Jr., and J.R. Stauffer. 1977. Preferred, avoided, and lethal temperatures of fish during rising temperature conditions. Jour. Of the Fish. Research Board of Canada 34:239-246.

Eaton, J.G., J.H. McCormick, B.E. Goodno, D.G. O'Brien, H.G. Stefan, M. Hondzo, and R.M. Scheller. 1995. A field information-based system for estimating fish temperature tolerances. Fisheries 20(4):10-18.

Elliott, J.M. 1975. The growth rate of brown trout, Salmo trutta L. fed on maximum rations. J. Anim. Ecol. 44, 805-821.

Elliott, J.M., and Elliott, J.A. 1995. The effect of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. J. Fish Biol. 47:917-919.

Elliott, J.M., M.A. Hurley and R.J. Fryer. 1995. A new improved growth model for brown trout, salmo trutta. Functional Biology, Vol. 9, No. 2, pp. 290-298.

Elliott, J.M. and Hurley, M.A. 1999 A new energetics model for brown trout, Salmo trutta. Freshwater Biology 42, 235-246.

Elliott, J.M. & Hurley, M.A. 2000. Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshwater Biology 44, 237-245.

Forseth, T. and B. Jonsson. 1994. The growth and food ration of piscivorous brown trout (Salmo trutta). Functional Ecology, Vol. 8, No. 2, pp. 171-177.

Frost, W.E. and M.E. Brown. 1967. The Trout - The Natural History of the Brown Trout in the British Isles. Collins Press, London.

Galbreath, P.F., N.D. Adams, and T.H. Martin T.H. 2004. Influence of heating rate on measurement of time to thermal maximum in trout. Aquaculture 241:587-599.

Grande, M. and S. Andersen. 1991. Critical thermal maxima for young salmonids. Journal of Freshwater Ecology 6:275-279.

Larsson, S. 2005. Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta – implications for their niche segregation. Environmental Biology of Fishes 73: 89–96.

Lee, R.M., and J.N. Rinne. 1980. Critical thermal maxima of five trout species in the southwestern United States. Transactions of the American Fisheries Society 109:632-635.

Lobon-Cervia, J. and P.A. Rincon. 1998. Field assessment of the influence of temperature on growth rate in a brown trout population. Trans. Amer. Fish. Soc., 127:5, 718-728.

Ojanguren, A.F., Reyes-Gavilan, F.G., Brana, F. 2001. Thermal sensitivity of growth, food intake and activity of juvenile brown trout. Journal of Thermal Biology 26:165-170.

Reynolds, W.W., Casterlin, M.E. 1979. Thermoregulatory behavior of brown troug, Salmo trutta. Hydrobiologia 62(1):79-80.

Wehrly, K. E., Wang, L., & Mitro, M. 2007. Field-based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature fluctuation. Transactions of the American Fisheries Society, 136(2):365-374.

ATTACHMENT A
Detailed Summary of Chronic Thermal Tolerance Values for Brown Trout, Juvenile and Adult, Summer

Table A-1. Chronic Temperature Tolerances – Laboratory Optimal Growth Studies, Constant Temperatures

Reference	Ago on Sigo	Acclim.	Optimum Growth	Temperature	Upper Optin	num Growth Temperature
Reference	Age or Size	Temp. (°C)	Temp. (°C)	Comment	Temp. (°C)	Comment
Brown (1946)	2-year	4.5 - 20	16 - 19			
Elliott (1975)	Initial wt.10 – 350 g	na	12.8 – 13.6		15.0	Temperature at growth rate = 80% of optimum
Elliott et al. (1995)	Initial wt. 1 – 350 g	na	13.1 – 13.4		15.0	Temperature at growth rate = 80% of optimum
Elliot and Hurley (1999)	Initial wt. 1 – 350 g	na	13.9		<18.7	Zero growth at 18.7°C
Elliot and Hurley (2000)	Initial wt. 250- 318 g	na	17.0	Optimum growth in energy terms		
Forseth and Jonsson (1994)	2 – 4 year	na	16.0		16.5 – 18.0	Temperature at growth rate = 80% of optimum
Ojanguren et al. (2001)	Juvenile	12 - 13	16.9		19.6	Temperature at growth rate = 90% of optimum

Table A-2. Chronic Temperature Tolerances – Laboratory Preference Studies

Doforonco	A go on Cigo	Acclim.	Average Prefere	nce Temperature	Upper Preference Temperature		
Reference	Age or Size	Temp. (°C)	Temp. (°C)	Comment	Temp. (°C)	Comment	
Cherry et al. (1977)	<1 year	12 - 24	11.7 - 18.5		16.2 – 22.8	Upper 95% confidence limits on averages	
Larsson (2005)	<1 year	8	16.0		17.5	Maximum preference for 75% of test fish	
Reynolds and Casterlin (1979)	Adult	0 - 5	12.2		13.7	Average maximum for 6 test fish	

Table A-3. Chronic Temperature Tolerances – Laboratory Upper Temperature Avoidance Studies

Reference	Age or Size	Acclim. Temp. (°C)	Temperature (°C)	Comment
Cherry et al. (1977)	<1 year	12 - 24	15 - 25	

Table A-4. Chronic Temperature Tolerances – Field Studies, Growth

Reference	Age or Size	Acclim.	Acclim. Optimum Growth To		Upper Optim	um Growth Temperature
Keterence	Age of Size	Temp. (°C)	Temp. (°C)	Comment	Temp. (°C)	Comment
Lobon-Cervia and Rincon (2011)	<1 year	NA	13.2		16.5	Temperature at growth rate = 80% of optimum

Table A-5. Chronic Temperature Tolerances – Field Studies, Preference

Reference	Temperature (°C)	Comment
Eaton et al. (1995)	24.1	Based upon 95 th percentile of 5% highest weekly
Eaton et al. (1993)	24.1	average temperatures
	25.3	1 day Maximum daily mean temperature (MEANT)
	23.3	7 day Maximum daily mean temperature (MEANT)
Wehrly et al (2007) ¹	22.5	14 day Maximum daily mean temperature (MEANT)
	22.1	21 day Maximum daily mean temperature (MEANT)
	21.0	63 day Maximum daily mean temperature (MEANT)

¹Results based upon field observations of both brook and brown trout.

Table A-6. Chronic Temperature Tolerances – EPA and Colorado

Reference	Temperature (°C)	Comments
EPA (1977)	17	Recommended level as MWAT
Colorado WQCD (2007)	19.6	Recommended level as MWAT

ATTACHMENT B
Detailed Summary of Acute Thermal Tolerance Values for Brown Trout, Juvenile and Adult, Summer

Table B-1. Acute Temperature Tolerances – Laboratory Lethal Temperatures, UILT/UUILT

Reference	Cigo on Ago	Acclim. Temp.	Test Duration		UILT
Reference	Size or Age	(°C)	Test Duration	Temp. (°C)	Comment
		5		22.5	
		10	1.4	24.5	
		15	1-d	26.2	
		20		26.5	
Frost and Brown	Unknown	23		27.8	
(1967)	Ulikilowii	5		22.5	
		10		24.2	
		15	7-d	24.4	
		20		24.8	
		23		25.3	

Table B-2. Acute Temperature Tolerances – Laboratory Lethal Temperatures, Critical Thermal Maximum

Reference	Size or Age	Acclim. Temp. (°C)	Rate	Temperature (°C)	Endpoint																	
Carline and Machung (2001)	Juvenile	10.9 12	0.3°C/min. (18°C/hour)	28.1 – 28.7 27.4– 29.0	Loss of equilibrium																	
			0.0104°C/hour	24.8 ± 2.5																		
			0.0208°C/hour	25.0 <u>+</u> 2.8																		
			0.05°C/hour	25.3 <u>+</u> 2.2																		
			0.1°C/hour	26.0 <u>+</u> 1.9																		
	1-year	15	0.5°C/hour	28.6 ± 2.0																		
	·		1°C/hour	29.7 <u>+</u> 1.1																		
			2°C/hour	29.9 <u>+</u> 0.8																		
			6°C/hour	29.9 <u>+</u> 1.9																		
Elliot and Elliot (1995) ¹			18°C/hour	30.0 <u>+</u> 2.0	Loss of equilibrium																	
Efflot and Efflot (1993)			0.0104°C/hour	24.9 <u>+</u> 2.4	Loss of equilibrium																	
			0.0208°C/hour	25.0 <u>+</u> 2.1																		
			0.05°C/hour	25.3 ± 2.3																		
			0.1°C/hour	25.7 <u>+</u> 2.1																		
	2-year	20	0.5°C/hour	28.5 <u>+</u> 1.7																		
			1°C/hour	29.5 <u>+</u> 0.9																		
																				2°C/hour	30.0 <u>+</u> 1.3	
			6°C/hour	30.0 <u>+</u> 1.9																		
			18°C/hour	30.0 ± 2.5																		
			2, 4, 8, 24°C/day																			
Galbreath et al. (2004)	Juvenile	15	(0.08, 0.17, 0.33,	29.0 - 29.3	Loss of equilibrium																	
			1°C/hour)																			
Grande and Andersen (1991)	2-3 months	17	2°C/day (0.08°C/hour)	26.2	Death																	

Table B-2. Acute Temperature Tolerances – Laboratory Lethal Temperatures, Critical Thermal Maximum (cont'd)

Reference	Size or Age	Acclim. Temp. (°C)	Rate	Temperature (°C)	Endpoint
		10	0.02°C/min (1.2°C/hour)	29.0	Loss of equilibrium
	Juvenile	20	0.02 C/IIIII (1.2 C/II0d1)	29.9	Loss of equilibrium
Lee and Rinne (1980)	Juvennie	10	Daily fluctuation of 6°C; increased 1°C every 48 hours (0.02°C/hour)	27.0^{2}	Loss of equilibrium

¹Temperature values are means and 95% confidence limits

²Maximum daily temperature with temperatures varying from 21 to 27°C

Table B-3. Acute Temperature Tolerances – Field Studies

Reference	Temperature (°C)	Comments
	27.6	1 day MAXT
	25.4	7 day MAXT
Wehrly et al (2007) ¹	24.6	14 day MAXT
	24.2	21 day MAXT
	22.9	63 day MAXT

¹MAXT = Maximum daily maximum temperature. Results based upon field observations of both brook and brown trout

Table B-4. Acute Temperature Tolerances – EPA and Colorado

Reference	Temperature (°C)	Comments
EPA (1977)	24	No metric (DM, MWMT, etc.) recommended
Colorado WQCD (2007)	24.6	Recommended level as DM